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Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic
studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may
be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyski-
nesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The
observed associations of specific gene variants with the prevalence and severity of a disorder can also
be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by
combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific
cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic termi-
nals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding
is that genetic variants which would be expected to increase the neostriatal dopamine concentration are
not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamater-
gic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia,
but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to ox-
idative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism
behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate
between neostriatal matrix and striosomal compartments when studying the mechanism of TD and be-
tween orofacial and limb-truncal components in epidemiological studies.
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The abnormal involuntary movement disorder tardive dyskinesia (TD) was first described by Schönecker [1], only
5 years after the introduction of antipsychotic treatment with phenothiazines [2,3]. The late appearance during
phenothiazine treatment was first noted by Sigwald et al. [4] and the introduction of the term ‘tardive dyskinesia’
is attributed to Faurbye et al. [5]. Since then several thousands of articles have been published describing the
epidemiology, genetics, clinical phenomenology, prevention, treatment and/or pathogenetic mechanism of this
movement disorder, including at least three review articles in Pharmacogenomics [6–8].

The extrapyramidal disorders, also termed ‘basal ganglia diseases,’ comprise a set of movement disorders including
Parkinson’s disease (PD) and Huntington’s disease (HD), but also mutual drug-induced movement disorders like
akathisia, parkinsonism, dystonia and dyskinesia [9,10]. The clinical picture and course of TD is not unambiguously
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defined. The involuntary repetitive movements are usually abrupt and irregular in nature. The movements may
affect tongue, lips and jaw as well as the forehead, eyelids (blinking), lower face and throat (orofacial dyskinesia); the
neck, trunk (rocking movements) and upper and lower limbs may also show rapid repetitive contractions (peripheral
or limb-truncal dyskinesia). When the diaphragm and intercostal muscles are affected, dyskinetic movements result
in making grumbling, snoring, groaning and/or sniffing noises (respiratory dyskinesia). Drug-induced dyskinesia
can be acute, but more often is tardive that means appearing late during continuation of treatment. Several other
drug-induced movement disorders may also have a tardive course and, moreover, TD is often accompanied by,
for example, parkinsonism or akathisia [11,12]. This variation could make it hard to correctly diagnose a case with
dyskinesia in epidemiological studies. Waln and Jankovic [11] have suggested reserving the name ‘classic’ TD for
the form with the typical orofacial movements. Antipsychotic drugs can cause TD, but they can also suppress or
mask this disorder [12]. In one of the first articles on TD, Uhrbrand and Faurbye [13] described that in some of
their patients dyskinesia first appeared or worsened after drug withdrawal [3]. As most patients need long-term
antipsychotic treatment, many TD cases will only become evident after a dosage reduction or a switch to a less
potent dosage level of another drug [12]. In addition, since most patients use antipsychotics for many years and
polypharmacy is not uncommon in daily practice, the neuroleptic load may show uncontrollable variation. The
above considerations decrease the validity and reliability of studies dealing with the incidence, prevalence, risk
factors and course of TD and may therefore darken the contribution of genetic factors, which could be used as a
diagnostic marker to prevent the disorder.

Extrapyramidal disorders like TD are attributed to a dysfunction of the extrapyramidal system. Three different
extrapyramidal divisions can be distinguished each of them having numerous parallel subdivisions: amygdaloid,
ventral and dorsal [14–16]. In neurology, the last one in particular is considered; it consists of parallel cortico-striatal-
[]-thalamo-cortical circuits including the dorsal striatum (caudate nucleus and putamen). This circuit contains
a direct and indirect pathway (represented by -[]-), including globus pallidus, substantia nigra pars reticulata
(SNr) and subthalamic nucleus (STh), as shown in Figure 1 [17,18]. The dorsal extrapyramidal circuit regulates the
intensity of cognitive and motor programs. The ventral extrapyramidal circuit includes the accumbens nucleus
and ventral pallidum and regulates the intensity of reward-seeking and distress-avoiding behavior [14–16]. The first
division is often not considered to be an extrapyramidal circuit, although it can be considered to be the primary
one [19,20]. The extrapyramidal circuit consists of serially connected glutamatergic and gamma (γ)-aminobutyric
acid (GABA)-ergic neurons (Figure 1). The direct and indirect pathways start from the striatum via a different
type of medium-sized spiny GABAergic projection neurons (MSNs). Direct pathway MSNs run to the internal
section of the globus pallidus (GPi) and the SNr. These structures are also the final destiny of the indirect pathway,
but then the striatal MSNs first project to the external section of the globus pallidus, which is connected with
GPi/SNr via the STh. Activation of the indirect pathway MSNs finally results in limitation of the amplitude and
velocity, while stimulation of the direct pathway enhances the movements. Direct pathway MSNs carry excitatory
type 1 dopamine receptors (DRDs) and indirect pathway MSNs inhibitory type 2 DRDs. Hence, the activation of
dopaminergic nigrostriatal fibers always results in augmentation of kinesis.

Pharmacogenetics and epigenetics can also be applied to elucidate the biochemical mechanisms behind a specific
disorder. This strategy can be fruitful in TD as well as in several mental disorders, provided that one considers
the multiple mechanisms behind these complex disorders. Theories-holding explanations for certain components
of TD can be used to identify enzymes, transporters and receptors of which changes of activity may modulate
the severity of the corresponding symptoms. Studying the influence of genetic variants with altered activity of
the corresponding product may confirm or falsify a specific hypothesis derived from the theory. The theory itself
may be derived from specific risk factors related to TD, but also from the pharmacological effects of certain TD
treatments. They can be more accurate than the results of epidemiological studies and lead to support treatments
that are believed to be ineffective when based on unreliable assessment in controlled clinical trials. This might lead,
in turn, to the development of more effective therapies.

In the present article, we will deal systematically with the biochemical mechanisms which can be studied in order
to elucidate the mechanism of TD. In addition, we will describe pharmacogenetic data we found in the literature
confirming or falsifying hypothesis derived from this strategy. The essentials of the corresponding association studies
are given in a supplementary table to this article.
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Figure 1. The cortico-striato-[]-thalamo-cortical circuits, including the indirect and direct pathways.
D1, D2: Medium spiny neurons with D1 or D2 receptors; ENK: Enkephalin; GPe: Globus pallidus, external segment;
GPi: Globus pallidus, internal segment; SNc: Substantia nigra, pars compacta; SNr: Substantia nigra, pars reticulata;
SP/DYN: Substance P/dynorphin; STh: Subthalamic nucleus.
Adapted with permission from [17].

Role of separate striatal components
Medium spiny neurons
MSNs are GABAergic projection neurons with a single long axon, medium-sized cell body and 5–10 extensively
branched spiny dendrites; they account for 95% of the striatal neurons. The vast majority of these projection neurons
express either met-enkephalin or dynorphin and substance P, which distinguishes them into indirect and direct
pathway MSNs (Figure 1) [21]. The dorsal striatum consists of a cytologically homogenous matrix with embedded
striosomes or patches, which decrease along the anterior–posterior and medial–lateral axis [22,23]. Matrix MSNs
receive a more or less topographically arranged input from the cerebral cortex [24]. Striosomal MSNs are targeted
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by neurons of the medial prefrontal cortex [25]. The latter MSNs play an important role in reward-driven decision-
making, which may be related to their addressing neurons within the globus pallidus, which in turn project to the
lateral habenula [26,27]. Matrix MSNs are essential components of the converging cortico-striato-thalamo-cortical
(CSTC) circuits that regulate the intensity of cognitive and motor programs [24].

Electrophysiological experiments have shown that MSN membrane potentials can be held in two preferential
states: a more polarized level, called the ’down’ state, of -61 to -94 mV; and a more depolarized level, called the
’up’ state, varying among neurons from -71 to -40 mV [24,28]. Temporally and spatially focused glutamatergic
corticostriatal input induces a localized down–up switch of MSNs and dramatically increase their vulnerability to
independent glutamatergic input. This ’up’ state can last hundreds of milliseconds, and it is then when MSNs spike.
Activation of the dopamine receptors modulates the glutamatergic synapses responsible for the transition to the ’up’
state. The qualitative features of the modulation depend upon which DA receptor is being stimulated: D2 receptor
signaling impedes the ’up’ state transition and diminishes ’up’ state spiking in indirect pathways MSNs, whereas
D1 receptor signaling does precisely the opposite in direct pathway MSNs [24,29]. In addition, indirect pathway
MSNs are more excitable than direct pathway MSNs [29,30]. This would also make indirect pathway MSNs more
vulnerable to long-term potentiation and glutamatergic excitotoxicity. In indirect pathway MSNs, the induction
of long-term potentiation (LTP) requires activation of 2a adenosine receptors (ADORA2A or A2AR) [29,31]. The
A2AR is a Gs-protein-coupled receptor that has been reported to bind to several other cellular proteins including
the formation of a heteromeric complex with the dopamine D2 receptor [32]. Growing evidence exists that tonic
A2AR activation is an essential step in allowing neurotrophic factors to affect neuronal activity [33]. Ivanova et al.
have shown that an ADORA2A variant, which is associated with the age of onset of HD, showed no relationship
with the prevalence of TD [34]. The same is true for N-methyl-D-aspartate (NMDA) receptor, NR2A subunit
(GRIN2A) variants associated with the age of onset of HD [35]. The glutamatergic NMDA receptor mediates LTP
and corresponding excitotoxicity. Hence, an important consequence of the likelihood of an ’up’ state of indirect
pathway MSNs by decreasing dopamine D2 receptors activation is an unlikely mechanism of TD. It may, however,
be a component of the mechanism inducing degeneration of indirect pathway MSNs in HD and the mechanism
of levodopa-induced dyskinesia (LID) in PD [35,36].

Dopamine-related neuroplastic changes of glutamatergic excitation of MSNs may also play a role in inducing
dyskinetic movements. Modulation of the induction of striatal LTP and long-term depression by dopaminergic
mechanism has been extensively studied, most often within the context of the mechanism of LID [37–39]. These
dopamine-related changes of MSN excitability may also play an important role in procedural and motor learning as
well as in the learning processes in reward-related behaviors [40]. An important limitation of the idea that changed
excitability of MSNs might result in TD is that a second mechanism would be necessary to explain the late-onset
and irreversible character.

A more fruitful line of research can be derived from taking the neuropathology of HD as a starting point. HD
is an autosomal dominantly inherited multisystem neurodegenerative disorder characterized by progressive motor
dysfunction including chorea (≈ dyskinesia) and athetosis (≈ dystonia). Neuropathologically, HD is characterized
by bilateral symmetrical neuronal loss of the neostriatum next to many other neurodegenerative changes [41].
This neuronal loss can be attributed to glutamatergic cytotoxicity by the induction of oxidative stress [42–44]. The
larger susceptibility of indirect relative to direct pathway MSNs to excitotoxic insults may be related to a higher
vulnerability to glutamatergic excitation on the one hand, but also to being protected by different neurotrophic
factors to the other hand [43]. It should be recognized that oxidation of dopamine to neuromelanin, exclusive of
the presence of sufficient neuromelanin to prevent this, can result in the production of the neurotoxic substance
aminochrome [45]. This is believed to be related to neurodegeneration of dopaminergic neurons in PD, but this
mechanism might also be important in LID in PD and TD [18,36]. In reaction to dopamine D2 receptor blockade by
antipsychotic drugs, dopamine release from the corresponding terminals is probably increased (see below), which
could result in increased uptake and oxidative metabolism by indirect pathway MSNs. A well-known theory to
explain the pathophysiology of TD holds that increased oxidative stress causes neuronal damage [46–48]. This might
be a related component of excess dopamine-associated damage to indirect pathway MSNs. Supportive evidence
for this theory comes from the results of pharmacogenetic studies in which polymorphisms of genes related to
antioxidant defense mechanisms were found to be associated with the prevalence of TD [8,48,49].

10.2217/pgs-2019-0100 Pharmacogenomics (Epub ahead of print) future science group



Pharmacogenetics & mechanism of tardive dyskinesia Review

GABAergic interneurons
Aspiny GABAergic interneurons account for approximately 3–4% of the total number of striatal neurons.
These medium-sized GABAergic interneurons were initially classified histochemically into: parvalbumin-positive;
somatostatin-, neuropeptide Y- and nitric oxide synthase-positive; and calretinin-positive interneurons [22]. In
addition, a newly discovered group of tyrosine hydroxylase (TH)-expressing interneurons was described [50]. Fur-
thermore, several subtypes have been specified during the last decade, each with their own neurocytology, intrinsic
electrophysiological properties and afferent/efferent connectivity and the end of this identification process is prob-
ably not yet in sight [51]. This complicates the identification of neurochemical interneuronal processes, which may
contribute to pathogenesis of TD. GABAergic interneurons are organized within the context of striatal microcir-
cuitry regulating the activity of projection neurons [52]. Altered functioning of this microcircuitry has been described
in several movement disorders [53] and NO-producing interneurons may have a role in regulating LTP/long-term
depression of glutamatergic synapses with GABAergic projection neurons [37,38]. Therefore, studying the association
between the prevalence of TD and genes, which are specifically related to the functioning of specific interneurons
may be very rewarding.

A special position appears to be taken by parvalbumin-expressing fast-spiking interneurons (FSI), which appear
to function relatively independent from other GABAergic interneurons [52]. These cells contribute to feedback and
feedforward inhibition in several CNS areas [22,52,54].

Cholinergic interneurons
Cholinergic interneurons account for only about 1–2% of all striatal nerve cells, but they nevertheless make the
striatum to the most acetylcholine-enriched structure of the CNS. These giant, aspiny interneurons probably
correspond to tonically active neurons identified by in vivo recordings in the putamen of primates [55,56]. This
means that these neurons show spontaneous activity in which this basal activity can be modulated up and
downward by synaptic input. Cholinergic interneurons ramify extensively and send projections widely throughout
this ganglion [57,58]. Although both striosomes and matrix contain these neurons, they are unevenly distributed
and may respond differently to specific input [23,59]. Acetylcholine stimulates both striatal nicotinic and muscarinic
receptors. Muscarinic receptors are more widely spread and can be divided in excitatory M1 class (M1, M3, M5)
and inhibitory M2 class (M2, M4) receptors [57,60].

The majority of efferents of cholinergic interneurons run to MSNs [61]: their functioning is regulated through
binding muscarinic receptors; evidence shows that MSNs express nicotinic receptors only to a very limited ex-
tent. There is evidence that direct and indirect pathway MSNs are mutually differently affected by cholinergic
interneurons due to differences in their carrying excitatory M1 and inhibitory M4 receptors [62–64]. Both direct
and indirect pathway MSNs carry both types of muscarinic receptors, but while M1 receptors are equally dis-
tributed, inhibitory M4 receptors are far more abundant in direct pathway MSNs. M2 receptors are predominantly
muscarinic autoreceptors [65]. Also GABAergic interneurons are inhibited through M2 receptors [57]. The same is
true for thalamostriatal and corticostriatal glutamatergic terminals. However, these glutamatergic terminals may,
similarly to dopaminergic terminals, also be stimulated by nicotinic receptors [57]. The same is true for several types
of striatal GABAergic interneurons, which may, however, also receive cholinergic input from fibers originating in
the brainstem [51].

Striatal cholinergic interneurons receive afferent input with a wide variety of neurotransmitters [57,61], including
glutamatergic input from the intralaminar thalamic nuclei [52] and nigrostriatal dopaminergic input [57]. With
respect to the latter type of input are dopaminergic projections, by far the most abundant in projecting to
MSNs [66]. In addition, the majority of the cholinergic interneurons express inhibitory dopamine D2 receptors and
only about 20% of the neurons low levels of D1 receptors [57]. Nigrostriatal projections, therefore, largely enhance
the activity of more specific CSTC circuits and inhibit the more widespread activity of cholinergic interneurons.
Via thalamostriatal projections from, in particular, the intralaminar thalamic nuclei [67–69], cholinergic interneurons
play an essential role in integrating cortical and cerebellar neuronal networks by gating CSTC processing [67,70,71].
This is probably mediated by enhancing muscarinic M1 and M4 receptor activation that interrupts cortical signaling
to striatal MSNs [67,72].

Affecting the signaling of the nicotinic cholinergic receptor (CHRN) is a well-known mechanism in showing
how cholinergic interneurons may modify drug-induced movement disorders [73]. To our knowledge, the possible
association between CHRN gene variants and the prevalence of movement disorders has not yet been studied. Our
group has recently published the first study in 472 patients with schizophrenia dealing with CHRM gene variants
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and TD [74]. This study identified associations between an CHRM2 variant and TD, but these were likely to be
secondary to other concomitant factors.

Corticostriatal & thalamostriatal glutamatergic neurons
Cortical glutamatergic neurons projecting to the striatum originate within all cerebral lobes, but within the striatum
their terminals are not evenly distributed [24]. While the striatal matrix is targeted by all cortical lobes, including the
limbic cortical areas [75], striatal striosomes receive highly selectively input from limbic medial prefrontal cortical
areas [76]. Also, the dorsal striatal targets of corticoid parts of the amygdaloid complex are largely confined to
striosomes [77]. The striosomal compartment regulates – partly directly [78] and partly via the lateral habenula [27,79]

– the activity of ascending dopaminergic neurons, which is important for neuroplastic changes of glutamatergic
synapses with MSNs [37]. Corticostriatal neurons to matrix MSNs are part of the cortico-striatal-[]-thalamo-cortical
circuits [24]. These are, however, not as parallel as previously believed because separate cortico-striatal converging
processing units can be distinguished, forming the start of these circuits [see 24]. The synapses formed by cortical
pyramidal neurons are exclusively on the dendritic spines of MSNs [29]. MSNs are also targeted by thalamostriatal
glutamatergic neurons [68,80]. Two anatomically and functionally distinct thalamostriatal neuronal systems can be
distinguished projecting from caudal intralaminar or nonlaminar (midline and specific relay) nuclei [80]. Caudal
and rostral intralaminar nuclei can be considered to represent the thalamic component of the ascending reticular
activating system [81,82]. Thalamostriatal neurons of intralaminar nuclei project preferentially to the striatum
with collaterals to the cerebral cortex [80,83]. These neurons preferentially innervate MSNs and (in particular
cholinergic) interneurons of striatal matrix in an focal, convergent manner. They form synapses with the dendritic
shafts of MSNs and show no spatial relationship with dopaminergic terminals [80,83]. Thalamastriatal projections
of the other neuronal group are mainly collaterals of thalamocortical neurons. They have a diffuse pattern of
innervation of the striatum without preference for striosomes of matrix. They contact mostly MSNs and, similar to
corticostriatal neurons, primarily target dendritic spines, making them vulnerable for dopaminergic activity [80,83].
The intralaminar thalamostriatal neurons are believed to play a role in basal ganglia-mediated learning and are
known to degenerate in PD [80]. Part of these thalamostriatal fibers correspond to the disynaptic connectivity
between cerebellar output nuclei and striatum [84–86]. These neurons belong to a striatal-subthalamic-cerebellar-
thalamic-striatal network that links the two subcortical regulatory systems: basal ganglia and cerebellar [87–89]. This
cerebellar network is believed to be involved in PD and dystonia [89].

Both corticostriatal and thalamostriatal fibers target MSNs as well as interneurons, but the strength of the input to
striatal neurons differs [52]. Interactions between the interneurons have an essential modulating influence on the final
activity of the GABAergic projection neurons [52]. Glutamatergic and dopaminergic terminals are, together with
astroglial processes, part of ‘striatal spine modules’, which operate as an independent integrative unit [90]. GABAergic
innervation from collaterals of MSNs, and predominately from interneurons, inhibits the further processing
of activation of these units. Acetylcholine, mainly released from varicosities, activates perisynaptically localized
metabotropic muscarinic receptors and presynaptic nicotinic receptors on dopaminergic and glutamatergic terminals
where they stimulate neurotransmitter release. Adenosine also modulates the activity of striatal spine modules largely
by affecting heteromers of adenosine, glutamate, dopamine and acetylcholine receptors [90]. Such heteromers were
also shown to exist between cannabinoid CB1 and adenosine A2A and/or dopamine D2 receptors [91,92] as well as
between cannabinoid CB1 and μ-opioid receptors. Opioid μ receptors are particularly expressed in the dendritic
spines of dynorphinergic GABAergic MSNs as well as in glutamatergic and GABAergic nerve terminals within the
striosomes compartment. They appear to be targeted by collaterals of (indirect pathway) GABAergic enkephalinergic
MSNs [91].

Glutamate released from glutamatergic synapses and astrocytes stimulates inhibitory metabotropic glutamate
receptor 2 (mGlu2) autoreceptors on corticostriatal and thalamostriatal glutamatergic synapses [93]. In contrast to
this, mGlu4 autoreceptors are exclusively expressed on corticostriatal terminals that preferentially target indirect
pathway MSNs [94]. In addition, presynaptic NMDA receptors have been identified on glutamatergic corticostri-
atal terminals [95]. Adenosine inhibits glutamate release by interacting with presynaptically localized adenosine A1

receptors [96]. Most studies agree that CB1 receptors are localized presynaptically predominantly in the GABAergic
neurons, and also in the glutamatergic terminals [91,97]. Nicotinic α7 acetylcholine receptors facilitate neurotrans-
mitter release from striatal glutamatergic terminals [98].

Whether the functioning of the above ‘striatal spine modules’ are an important target to be addressed in
pharmacogenetic studies of the pathophysiology of TD is uncertain. Turčin et al. [99] studied the effects of
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18 polymorphisms of adenosine receptor genes ADORA1, ADORA2A and ADORA3 in 127 outpatients with
schizophrenia without finding a significant association with TD scores. This is well in line with the previously
described findings that rs35060421 variant of ADORA2A was also not significantly associated [34]. However, several
variants of ADORA2A are associated with the age of onset of HD [34,100]. This may correspond to our previous
finding that NMDA receptor variants that are also associated with the age of onset of HD did not show any
association with TD [35]. A similar association with the age of onset in HD was found for variations in the CNR1
gene [101], but using 20 tagSNPs, which captured all variations of this gene, Tiwari et al. [102] found only a weak
association with TD. The only association (rs806374) was marginal after correcting for multiple testing. In our
opinion, dysfunction of striatal spine modules as a possible cause of TD should probably be abandoned.

Dopaminergic neurons
Dopaminergic terminals originating from cell bodies in the midbrain (Figure 2) are traditionally considered to
be the predominant regulators of the activity of cortico-striatal-[]-thalamic-cortical circuits. They originate from
the substantia nigra, pars compacta (SNc) and a small number of other areas, which form a continuous band
within the midbrain, jointly corresponding to the areas A8, A9 and A10 [103]. Apart from the dopaminergic
neurons of this so-called ‘dorsal tier’, which contain the calcium-binding protein calbindin, a ‘ventral tier’ can be
distinguished [103]. Dopaminergic nigrostriatal neurons of the ventral tier do not contain calbindin and are more
vulnerable to degeneration in PD. They also have cell bodies localized within the underlying SNr.

Dopaminergic neurons from the midbrain project over a wide area of the forebrain [17,104,105] and regulate a
wide variety of motivational, emotional and cognitive processes [106–108]. Neurons of the nigrostriatal pathway also
have a complex pattern of axonal arborization reaching several extrastriatal basal ganglia as well as other forebrain
structures like thalamus and basal forebrain nuclei [103,109,110].

Another difference between dopaminergic neurons of dorsal and ventral tiers is their distribution within the
striatum [22,103,109,110]. Innervation by nigrostriatal dopaminergic neurons of the dorsal tier is largely restricted to
striatal matrix, while neurons of the ventral tier target both striosomes and matrix.

Both dorsal (caudate, putamen) and ventral (accumbens) striatum are densely innervated by dopaminergic
fibers originating in the midbrain. Both types of GABAergic projection neurons as well as all GABAergic and
cholinergic interneurons express dopamine receptors [22]. High-affinity dopamine D2-type receptors (DRD2,
DRD4) in particular are believed to be tonically activated by the spontaneously active dopaminergic neurons
projecting from the midbrain, while behaviorally relevant stimuli result in elevation of the dopamine release,
which results in also activating lower affinity D1-type receptors (DRD1, DRD5) [22]. Direct and indirect MSNs
express DRD1 and DRD2, respectively, with about 10–20% overlap [22,111]. In both types of MSNs, dopaminergic
terminals end on the shaft of the spines (in the direct vicinity of corticostriatal and thalamostriatal synapses)
as well as on dendrites themselves [91,112,113]. However, most dopamine receptors are localized extrasynaptically
and are probably stimulated by spillover away from release sites [22]. In the core of the striosomes, dopamine is
released from varicosities of ventral tier fibers passing through to the matrix [103]. Fast spiking, parvalbumin-positive,
GABAergic interneurons (FSI) have a prominent role in regulating the activity of MSNs [22]. Dopamine may excite
these interneurons by activating DRD5 expressed by these interneurons, but also by activating DRD2-mediated
inhibition of GABAergic input from other interneurons. Moreover, these FSI are heavily targeted by globus pallidus
neurons, which express D2 receptors [29]. Low-threshold spiking, somatostatin-, neuropeptide Y- and nitric oxide
synthase-positive striatal GABAergic interneurons (LTS) also express DRD5 receptors [22]. Cholinergic interneurons
express both D2 and D5 receptors [22,29]. Dopaminergic terminals express DRD2-class autoreceptors [29]. Via
activation of the presynaptic nicotinic receptors on dopamine terminals, cholinergic interneurons may activate
dopamine release [22,114]. Extrasynaptic dopamine receptors are also found presynaptically at glutamatergic and
dopaminergic terminals on enkephalin MSNs [90]. mGlu1R are localized presynaptically in dopaminergic synapses;
the same is true for the localization of adenosine A1 receptor that inhibit dopamine release [90]. Multiple lines
of evidence indicate that a4b2 nAChRs on dopamine terminals in the striatum potently modulate dopamine
release [98].

Dopamine plays an essential role in regulating neuroplastic changes within striatal spine modules [29,37,38].
However, modulation of the vulnerability of MSNs to glutamatergic stimulation is more likely to be involved in
the inducing of LID and HD, and not of TD, as has been explained in the above. Partly extrasynaptically localized
dopamine receptors on dendrites and cell bodies of MSNs could also be involved. Early pharmacogenetic studies
have revealed associations between DRD2 and DRD3 variants and TD [8,115,116]. Pharmacogenetic studies of a
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Figure 2. Principle dopaminergic neuropathways. Cell bodies are in the nuclei (red-filled shapes) positioned within the brainstem. Nerve
fibers (red lines) terminate in the dorsal and ventral striata, amygdala and frontotemporal cortex [105].
SNc: Substantia nigra pars compacta; VTA: Ventral tegmental area.
Reproduced with permission from [105].

possible association with DRD1 variant are relatively scarce and do not convincingly demonstrate an effect [117,118].
The latter is also true for DRD4 variants [119–121]. We are not aware of studies of a possible association between
DRD5 and TD, but some evidence supports the involvement of the DRD5 gene in idiopathic dystonia [122].
Studying the relationship between functional DRD5 variants and TD could give important clue about the possible
involvement of striatal interneurons.

Another thought explaining the relationship between dopamine and TD would be that TD is related to increased
activation of dopaminergic nigrostriatal terminals. Striosomal GABAergic projection neurons inhibit the activity of
dopaminergic nigrostriatal pathways [123,124]. This is probably mediated via straight striatonigral connectivity [78],
but may also include a pathway via the lateral habenula [27]. Striosomes are not homogenous structures [23]. Although
most striatal MSNs and their distant afferents tend to respect the striosomes-matrix borders, cholinergic and some
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GABAergic interneurons occupy the peristriosomal/boundary region crossing these borders. Within striosomes,
more DRD1 than DRD2-expressing MSNs are observed, while in the matrix the situation is opposite to this [23].
However, prefrontal corticostriatal neurons target the periphery of striosomes more heavily than their cores;
this periphery contains more enkephalin-expressing indirect pathway MSNs than the corresponding cores [103].
Blocking DRD2 of these peripheral indirect pathway MSNs would result in increased activity of nigrostriatal
neurons and an augmented release of dopamine within the core, activating DRD1 of direct pathway MSNs, but
would also increase the oxidative stress burden of both striatal matrix and striosomes. Activation of striosomal
direct pathway MSNs would prevent further augmentation of the dopamine release, but the final dopaminergic
activity within the matrix would be higher. This could also promote degeneration of preferentially indirect pathway
MSNs [18]. However, mutual findings complicate this theory. Genotypes that affect the activity of enzymes and
transporters, which are expected to increase striatal dopamine concentration, should modify the incidence of TD.
Concerning several dopamine degradation enzymes and synaptic dopamine uptake transporter, this is less obvious
than to be desired. The rate-limiting step in the synthesis of dopamine is the hydroxylation of the amino acid
tyrosine to levodopa via tyrosine hydroxylase (TH) [125]. The supposedly functional TH Val81Met polymorphism
showed no association at all with TD in Korean patients with schizophrenia [126]. Although an association between
certain variants of the dopamine catalyzing enzyme COMT gene has been described [115,127,128], meta-analysis have
shown that the most important functional COMT Val158Met (rs4680) variant shows very little association with
TD [115,128,129]. The COMT Val158Met variant is known to be associated with neuropsychiatric disorders such as
Attention-Deficit/Hyperactivity Disorder [130], but not with LID in PD patients [131]. This could be related to the
difference in expression of DA-transporters in different brain regions [131,132]. We identified only one study of a
possible association of variants of the MAOA or MAOB genes with TD [133]. The relationship between MAO and
the incidence of TD is theoretically complex as low activity would increase dopamine levels, but would decrease
the oxidative stress burden of oxidative dopamine metabolism. VMAT2 transports and concentrates monoamines
(catecholamines, serotonin, histamine) from the cytoplasm into synaptic vesicles in order to allow their concentrated
release from synapses and varicosities after stimulation. Several variants of the SLC18A2 gene which encode for
VMAT2 were shown to be associated with TD [134,135]. The VMAT2 inhibitors reserpine, tetrabenazine, valbenazine
and deutetrabenzine have at least some efficacy when treating TD [136]. The low-expression AA genotype of SCL18A2
rs363224 variant appeared to be protective against TD and this variant interacted with the putative functional
DRD2 variant rs6277 [134]. The therapeutic activity of VMAT2 inhibitors, however, has an acute effect. Of note,
we cannot be sure that the activity of VMAT2 is related to the pathogenesis of TD, since this treatment effect
may only prevent dyskinesia from becoming symptomatic; classical antipsychotic drugs have similar dyskinesia-
decreasing activity. The synaptic dopamine transporter (DAT) transports dopamine from the extracellular space
into neurons [132]. Güzey et al. [137] studied DAT1 VNTR polymorphism and found that the nine repeat alleles
were more common in 119 patients with schizophrenia suffering from acute dystonia, parkinsonism and/or TD.
The same polymorphism did not influence the prevalence of rigidity in 61 patients with schizophrenia in the
study of Lafuente et al. [138]. Indirect evidence comes from the existence of a rare SLC6A3-related DAT-deficiency
syndrome characterized by a hyperkinetic movement disorder [139]. Nevertheless, a possible relationship between
DAT hypoactivity and TD has not (yet) been established.

It can be concluded that the results of genotyping genes that encode for enzymes and transporters affecting
dopamine processing within the striatum do not offer much support for a dominant role of excess dopamine
concentrations in the pathogenesis of TD. This could be related to the functioning of dopamine within striosomes
where it stimulates DRD1 carrying direct pathway MSNs, which results in inhibition of the activity of dopamin-
ergic nigrostriatal neurons. Hence, increased extracellular concentration automatically decreases the activity of
dopaminergic neurons projecting to the matrix. The neurochemical characteristics of striosomes appear to be rather
complex and full of surprises [23]. Therefore, this mechanism of TD remains still strongly possible and should be
considered in the light of future discoveries.

Serotonergic neurons
Cell bodies of neurons containing 5-hydroxytryptamine (5-HT, serotonin) are predominantly localized near the
midline (raphe) of the brainstem (Figure 3). These serotonergic nuclei are divided into a group of upper and lower
raphe nuclei [17,104,105,140]. The upper raphe nuclei are connected with the SNc and ventral tegmental area and
with both dorsal and ventral striatum.
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Figure 3. Serotonergic neurotransmitter system. Cell bodies are found in raphe nuclei (B1, B2, B3, B5, B7) near the midline within the
brainstem. Fibers show widespread distribution within the CNS [105,140].
B7: Nucleus raphe dorsalis.
Reproduced with permission from [140].

A complicating factor may be that seven types of 5-HT receptors (HTRs) can be distinguished, most of them
having several subtypes. All but one (HTR3) are g-protein-coupled receptors [17]. For their role in dyskinesia,
HTR1A, HTR2A and HTR2C have been most extensively studied [141,142]. A peculiarity of HTR2 is that this
receptor is spontaneously active, which enables clozapine, for example, to have inverse agonistic activity, which
means that it has a pharmacological effect opposite to 5-HT itself [143]. In order to understand how HTR2 modify
TD (and parkinsonism), the exact localization of HTR2A and HTR2C receptors in the midbrain, striatum and
cerebral cortex should be considered [140]: HTR2 are expressed by projection neurons, presynaptically on the fibers
targeting these and on parvalbumin-expressing, GABAergic and FSI, but the ratio between HTR2A and HTR2C

affecting these structures differs per area (Figures 4–6). We have concluded that, concerning the dorsal striatum,
HTR2C are predominantly involved. HTR2C decrease dopamine release within the dorsal striatum by stimulating
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Figure 4. Distribution of 5-HT2A and 5-HT2C receptors within the prefrontal cortex.
Reproduced with permission from [140].

FSI within the SNc and within the dorsal striatum itself [140]. Serotonin inhibits DA activity within the ventral
striatum and frontal cortex mainly by affecting HTR2A. By blocking HTR2A, and to a lesser extent HTR2C, atypical
antipsychotics enhance dopaminergic activity within the prefrontal cortex and the striatum. Apart from promoting
DA release from striatal DAergic fibers, HTRs may increase the activity of striatal GABAergic projection neurons
(MSNs) directly (Figure 5). As HTR2A, and more extensively HTR2C, have constitutive activity, the blockade of
these receptors by clozapine, for example, would result in decreased activity of MSNs. This is an attractive thought
in explaining the low potential of clozapine to induce TD, because inhibition of the activity of indirect pathway
MSNs would decrease their vulnerability for oxidative stress.

The complex effects of HTR2A and HTR2C on the functioning of the extrapyramidal system should also
be considered when interpreting the results of pharmacogenetic studies of a possible association with TD. The
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Figure 5. Distribution of 5-HT2A and 5-HT2C receptors within the striatum.
Reproduced with permission from [140].

HTR2C gene is X-bound and males are, therefore, hemizygotes, so always homozygous. Moreover, HTR2C has
more constitutive activity than HTR2A and the influence of genetic variants on this constitutive activity has hitherto
not been assessed. Atypical antipsychotics have variable affinity to HTR2A and HTR2C, and different drugs may
have variable inverse agonistic activity. Some HTR2C antagonists (e.g., agomelatine) are known to lack inverse
agonistic activity [144]. This makes an in vivo or ex vivo test to estimate the functional consequence of HTR2C

variants essential, but until now we have failed to find one [145].
The authors have participated in studies addressing a possible association between HTR2 and TD in four

different patient populations (African–Caribbean, Dutch [2x], Siberian) [146–149]: the results are conflicting, which
correspond to the results in other populations [135,150]. Due to their localization, HTR2C deserves priority and
the HTR2C Cys23Ser polymorphism (rs6318) has been studied most extensively. We believe that the differences
between the results of these studies may be partly explained by the use of HTR2A/2C blocking agents (atypical
antipsychotics), which apparently decrease the differences between carriers and noncarriers [149]. Other HTR
genes studied are HTR3A [151] and HTR6 [152], but the results for these C178T-HTR3A and C267T HRT6
polymorphisms were negative. The same is true for the SLC6A4 gene of which the repeat polymorphism called
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Figure 6. Distribution of 5-HT2A and 5-HT2C receptors within the midbrain.
Reproduced with permission from [140].

HTTLPR has been sufficiently studied [137,153–156]. Changed activity of this transporter protein could modulate
HTR stimulation. Also modulation of the enzyme involved in the biosynthesis of 5-HT: tryptophan hydroxylase
(TPH) would have the same effect. The T366C variant of TPH2 was found not to be significantly associated with
the presence of TD [155]. Only a minor portion of tryptophan is metabolized to 5HT; the majority is metabolized
via the kynurenine pathway [157,158]. The majority of the metabolites of this metabolic pathway are neuroactive, and
imbalances of the pathway are assumed to contribute to complications of mental disorders [159,160]. Polymorphisms
of genes of involved enzymes have been associated with schizophrenia and PD [157], but a possible association with
TD has, as far as we know, not been studied.

Adrenergic neurons
The adrenergic neuronal system of the brain consists of neurons that synthesize norepinephrine (NE, noradrenaline)
with cell bodies in pontine and medullary brainstem [17,104,105]. About half of these are localized in the so-called
locus coeruleus (LC) complex that is by far the most important adrenergic center of the brain (Figure 7). Although
some non-LC neurons in particular may innervate the dorsal striatum [161], their number must be low as the
NE content of the dorsal striatum is low in comparison to other forebrain regions [161,162]. LC neurons have
been found not to innervate the caudate nucleus [163]. The ventral striatum, and particularly the shell part of the
nucleus accumbens, is substantially innervated by adrenergic terminals, the core part appeared to virtually devoid
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Figure 7. Adrenergic neurotransmitter system. Cell bodies within the locus coeruleus complex (red-filled shape) and a group of specific
adrenergic cell groups (purple-filled shapes). Cell group A2 overlaps with nucleus solitarius and nucleus dorsalis nervi vagi.
Reproduced with permission from [105].

of noradrenergic fibers [164]. We have previously described that these adrenergic fibers may play an important role
in causing akathisia [165].

It will, therefore, not come as a big surprise that the results of pharmacogenetic studies did not support a possible
role for the adrenergic system in causing TD. Several studies addressed polymorphisms of the DBH gene [166–169],
but none of them showed an association with TD. To our knowledge, a possible relationship between variants
of the NET gene and TD has not been studied. Similar to other catecholamines NE is catabolized by MAO and
COMT.

It should be kept in mind that the above findings do not rule out a possible influence of the adrenergic system
on the severity of TD symptoms. By temporally affecting the activity of corticostriatal, thalamostriatal and/or
nigrostriatal neurons, the intensity of dyskinesias could be affected.
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Some complicating factors
Spontaneous dyskinesia & dyskinesia related to schizophrenia
Dyskinesia is known to occur spontaneously, particularly in elderly persons [170,171], and also in drug-naı̈ve persons
with schizophrenia [172,173] as well as their direct relatives [174,175]. A systematic review of dyskinesia in drug-naı̈ve
patients with schizophrenia estimated a median rate of 9% [173]. The spontaneous occurrence of dyskinesia in the
studied patient population can obscure the mechanism of drug-induced dyskinesia. This is not necessarily so as the
pharmacological effect can also be the potentiation of a process linked to the schizophrenic disease. Still, this is a
factor to consider when applying the results of pharmacogenetic studies when trying to explain the mechanism of
drug-induced schizophrenia.

Orofacial versus limb-truncal dyskinesia

In the very first reports about this movement disorder, TD was described as a disorder characterized by involuntary
orofacial movements [3]. Waln and Jankovic [11] suggest that this orofacial form should be termed ‘classic’ TD.
We have observed that different gene variants are associated with orofacial versus limb-truncal dyskinesia [49,146].
We have also noticed that in LID, specific genetic associations exist with limb-truncal dyskinesia, but not with
orofacial dyskinesia [35]. This may correspond with the observation that in HD and LID often large muscle groups
are affected and in TD more subtle movements are present, most often in the orofacial area. Orofacial movements
are related to a phylogenetically earlier developmental phase than limb movements [19,176]. This might indicate that
orofacial dyskinesia is linked to the functioning of the so-called ‘primary’ brain, largely consisting of limbic cortical
and ganglionic structures [14]. It is tempting to speculate that orofacial dyskinesia is more closely related to the
functioning of striatal striosomes than peripheral dyskinesia; this hypothesis would necessitate the consideration
of the intrastriatal distribution of, for example, HTR2C. In an old autoradiographic study with [3H]LSD and
[125I]DOI as ligands, Waeber and Palacios [177] have found that the localization of their binding sites in the human
dorsal striatum is very similar to that of striosomes. More specific and in vivo studies are necessary to elucidate this
matter in more detail.

Dopaminergic & serotonergic innervation of other cerebral structures
In this article, we have limited ourselves to possible modulation of the functioning of neostriatum, but the
extrapyramidal system also includes extrastriatal basal ganglia, such as globus pallidus and STh. These structures
are also innervated by dopaminergic, cholinergic and serotonergic neurons [103,178,179]. Moreover, the functioning
cerebral cortex and corticoid amygdala possibly affects the occurrence and severity of TD by increasing the input
to the neostriatum; the functioning of these cortical structures is also modulated by dopaminergic, cholinergic and
serotonergic innervation [105,140]. This is especially true for connectivity within the pathways from the amygdala
via the striatopallidum and habenula (or directly) to midbrain monoaminergic nuclei [19,20], which have, in this
respect, barely been studied yet.

Conclusion
Many mental and neurological disorders are too complex to discover genes that are uniquely involved in their
pathogenesis and therefore to offer the possibility for use as a biomarker to diagnose these disorders with sufficient
validity and reliability. Therefore, the strategy applied in this paper could be a sensible alternative to make this type
of research to a useful endeavor. Moreover, the atheoretical testing of variants associated with a specific disorder
induces the need for correcting for multiple testing, which might obscure mutual relevant associations. This is not
necessary when a specific hypothesis is confirmed or falsified by establishing a necessary association with a genetic
variant known to be functional in another context. Several other variants of the same gene (functional and not
functional) should be measured too in order to minimize the chance of establishing an accidental relationship.

Considering the evidence presented in this paper, it can be concluded that the results of genotyping genes that
encode for enzymes and transporters affecting dopamine processing within the striatum do not offer much support
for a dominant role of excess dopamine concentrations in the pathogenesis of TD. This is also true for the dopamine
induced switching of striatal indirect pathway MSNs into their excitability ‘on’ state, which would increase their
vulnerability to glutamatergic excitotoxicity. This mechanism, which may have an important role in HD and LID,
is probably prevented in TD by the blockade of type 2 DRDs by the obligatory usage of antipsychotic drugs.
Furthermore, little evidence can be found for excess stimulation of type 1 DRDs as a mechanism of inducing TD
by causing LTP at direct pathway MSNs. However, DRD5 has been insufficiently studied to be able to exclude a
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possible role of striatal GABAergic interneurons affecting the excitability of striatal GABAergic MSNs. A possible
role of cholinergic interneurons in causing TD is rather unlikely. Serotonergic transmission may play a role in
the pathogenesis of TD by stimulating HTR2 of striatal MSNs directly. This would increase the vulnerability of
indirect pathway MSNs for glutamatergic excitotoxicity. Clozapine and other atypical antipsychotics may prevent
this due to causing HTR2 inverse agonism. That excitotoxicity probably plays a role in the pathogenesis of TD is
suggested by its relationship with oxidative stress factors.

When interpreting the results, possible artefacts should be thoroughly considered. The large variations between
the results of different studies of a possible association between HTR2 variants and TD may be related to not
considering the usage of HTR2 antagonizing compounds by the investigators. The acute effects of these drugs
might minimize differences between the activities of genetic HTR2 variants. Considering the observation that the
dorsal striatum and core part of the ventral striatum is barely innervated with adrenergic fibers originating within
the LC, it can hardly come as a surprise that the results of pharmacogenetic studies did not support a possible role
for the adrenergic system in causing TD. It should be kept in mind, however, that the severity of TD symptoms is
also influenced by the activity of the stress system. By affecting the activity of corticostriatal, thalamostriatal and/or
nigrostriatal neurons, usage of stress reducing or inducing medication may modulate the intensity of TD. This
might influence the findings of epidemiological pharmacogenetic studies of TD obscuring relevant pharmacological
mechanisms of the disorder.

The limited relationship with factors which increase dopamine exposure on the one hand and the clear relation-
ship with (possibly dopamine-related) oxidative stress on the other hand is a puzzling phenomenon. A possible
explanation could be that TD is primarily related to a dysfunction of mechanisms within the striatal striosomal
compartment. Excess dopamine levels within the striosomal compartment would automatically result in inhibition
of the activity of dopaminergic neurons projecting to the matrix by stimulating DRD1-carrying direct pathway
MSNs, which results in inhibition of the activity of dopaminergic nigrostriatal neurons. The mechanism of TD
could be related to a dysfunction of striosomal indirect pathway MSNs, which is related to increased vulnerability
to oxidative stress. The importance of the striatal striosomal-matrix diversity in causing TD is obviously worthwhile
elucidating, but this is currently still outside the scope of pharmacogenetic research. What could help is, when
pharmacogenetic studies discriminate between orofacial (primary in TD) and limb-truncal (primary in HD and
LID) dyskinesia in order to address different components of these extrapyramidal disorders.

Future perspective
When considering the above conclusions, five subjects for important future research come to mind. Most important,
in our opinion, may be the discrimination between orofacial (i.e., ‘classical’) TD from limb-truncal (i.e., ‘periph-
eral’) TD in association studies. Orofacial TD can be assessed with the first four items of the Abnormal Involuntary
Movement Scale, which is incorporated in the Schedule for the Assessment of Drug-Induced Movement Disor-
ders [9,10]. Limb-truncal TD is measured with the items 5–7 of the Abnormal Involuntary Movement Scale. It
might be useful to reanalyze the data of older association studies in this respect as well as studying classical TD
separately in future studies.

Respiratory TD has hardly been studied, which is probably an inadequacy of this type of research. It would be
rational trying to find out whether respiratory TD is closer related to classical or more linked to peripheral TD.

The intensity of TD is well known to be connected to the patient’s anxiety level. It might be sensible to measure
this anxiety level (with a rating scale or psychophysiological method) and to include this measure as an independent
variable when statistically analyzing association data.

When studying functional variants of the HTR2 genes, a possible relationship with TD can be distorted by the
TD intensity in patients using HTR2 antagonists (several second generation antipsychotics) or inverse agonists
(clozapine). The same is true when CHRM variants are studied in patients using CHRM antagonists. Prospective
studies in a sufficiently large cohort of patients without such treatments are, in our opinion, obligatory.

The possible role of DRD5 in regulating the activity of several GABAergic striatal interneurons could make
association studies of DRD5 variants with the prevalence and severity of TD a very useful endeavor. To our
knowledge, such studies are still lacking. A limitation might be that DRD5 SNPs with functional consequences
have not yet been identified [183], although some evidence supports the involvement of the DRD5 gene in idiopathic
dystonia [122].
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Executive summary

Theoretical background
• Tardive dyskinesia (TD) is a motor complication of long-term treatment with antipsychotic drugs, characterized by

involuntary repetitive movements of mouth and face (orofacial/classic TD), neck, torso and extremities
(limb-truncal/peripheral TD) and/or diaphragm and intercostal muscles (respiratory TD).

• TD is attributed to a dysfunction of parallel cortico-striatal-[direct/indirect pathway]-thalamo-cortical (CSTC)
circuits including the dorsal striatum of the extrapyramidal system.

• Possible neostriatal cellular components are GABAergic medium spiny projection neurons (MSNs), GABAergic
interneurons, cholinergic interneurons, corticostriatal and thalamostriatal glutamatergic neurons, dopaminergic
neurons, serotonergic neurons and adrenergic neurons.

• Pharmacogenetics and epigenetics can be applied here by showing how changed activity of certain enzymes,
transporters and/or receptors can modulate the severity of symptoms of that disorder.

Medium spiny neurons
• MSNs account for about 95% of the striatal neurons and can be divided into motor activity-augmenting,

DRD1-carrying, direct pathway, and activity-diminishing, DRD2-carrying, indirect pathway, GABAergic projection
neurons.

• Indirect pathway MSNs are more vulnerable to excitotoxicity/oxidative stress than direct pathway MSNs.
GABAergic interneurons
• Medium-sized, aspiny GABAergic interneurons account for 3–4% of striatal neurons and are organized within the

context of striatal microcircuitry regulating the activity of MSNs.
• Parvalbumin-expressing, fast-spiking interneurons regulate relatively independently from other GABAergic

interneurons and contribute to the inhibition of dopaminergic and serotonergic input to MSNs.
Cholinergic interneurons
• Giant, aspiny cholinergic interneurons account for 1–2% of striatal neurons, they affect activity of MSNs via

excitatory M1-class and inhibitory M2-class CHRM receptors and the activity of glutamatergic and dopaminergic
terminals as well as GABAergic interneurons via excitatory CHRN receptors.

• An observed association between CHRM2 variants and TD was likely secondary to other contributing factors.
Corticostriatal & thalamostriatal glutamatergic neurons
• The spines of matrix MSNs are targeted by converging corticostriatal and collaterals of thalamocortical

glutamatergic fibers as well as by dopaminergic nigrostriatal terminals, which together with astroglial processes
form converging ‘striatal spine modules’.

• Intralaminar thalamostriatal neurons mainly target striatal cholinergic interneurons, which have a more
widespread influence on the activity of CSTC circuits.

• The results of various association studies oppose the hypothesis of a possible role of striatal spine module
dysfunction in TD.

Dopaminergic neurons
• Early pharmacogenetic studies have revealed associations between DRD2 and DRD3 variants and TD. DRD1 and

DRD4 variants do not convincingly show a relationship. DRD5 has not yet been studied.
• Apart from VMAT2 (which concentrates monoamines into their synaptic vesicles), addressing enzymes and

transporters affecting dopamine levels within the striatum did not demonstrate an important contribution to the
prevalence or severity of TD.

Serotonergic neurons
• Cell bodies of neurons containing 5-HT, which are localized within upper brainstem raphe nuclei, are connected

with midbrain dopaminergic areas and with both dorsal and ventral striatum.
• The results of association studies of HTR2C variant rs6318 were conflicting which may be partly explained by the

use of atypical antipsychotics (HTR2A/2C blocking agents) by patients.
Adrenergic neurons
• The dorsal striatum is hardly targeted by terminals of neurons that synthesize norepinephrine, but these neurons

may affect the severity of TD by modifying the anxiety level.
• The results of pharmacogenetic studies do not support a possible role for the adrenergic system in causing TD.
Complicating factors
• Dyskinesia can occur spontaneously and in drug-naı̈ve persons with schizophrenia and these perhaps unrelated

adverse movements may modify measured TD.
• The genetic background of the orofacial form of TD (classic TD) is probably different from that of peripheral and

possibly also respiratory TD.
• Dopaminergic, serotonergic and adrenergic activity can modulate the severity of TD by affecting the functioning

of other forebrain structures.
Conclusion
• The results of pharmacogenetic studies do not support a dominant contribution to the pathogenesis of TD of

excess dopamine concentrations within the neostriatum.
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• Increased probability of excitotoxicity due to dysfunction of striatal spine modules of indirect pathway MSNs is
also unlikely.

• Genetically determined increased vulnerability to oxidative stress of indirect pathway MSNs may represent a
more plausible mechanism.

• HTR2C-associated overstimulation of indirect pathway MSNs, which would also enhance neurotoxicity, is also
worthwhile considering as a possible mechanism.

Future perspective
• In future pharmacogenetic studies classic (orofacial) TD is better distinguished from peripheral (limb-truncal) TD

with the addition of respiratory TD as a separate entity.
• Other advances may come from considering the usage of drugs with affinity to the receptor or enzymes studied

and the influence of psychic phenomena (e.g., anxiety) on the severity of TD symptoms.
• The possible association between variants of DRD5 and CHRN with the prevalence and severity of TD has not

been studied until now.
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